Tag Archives: Python

AI診断の信頼性:XAI(Explainable Artificial Intelligence)とLIME

これまで3回にわたって、AIで植物の病気を診断するサイトを作った時の話をまとめた。「その他」の所に「作ったモデルにイマイチ自信ないわー」と書き続けた気がするので、(正しく)Deep Learningな人工知能(AI)を構築する難しさと、その対応について記事にしてみた。

Deep Learningを使用したモデルはイマイチ信頼できない

ラノベのタイトルみたいだなーと思いつつ・・・。色々な場所で言われている通り、Deep Learningを使用した判別モデルが実際のところ何を行っているかを知るのは簡単ではない。AIに限らずだが、モデル作成を長くやっているとクロスバリデーションで高精度なモデルが現実世界では全く使えない状況に遭遇する。特に、ドメイン知識から考えてモデルに納得感が無い場合、「評価設計が間違えている」「リーク情報(leakage) を拾っている」「データのバイアスが影響している」事が原因で、現実問題に対して有効でない事が多い。納得感はまっとうなモデルを作る上でとても重要である。私は何をやっているかわからない(説明可能性がない、納得感のない)モデルを用いることに恐怖感を感じるし、それを信頼して使うことは出来ない。(そーいうこともあり、でぃーぷらーにんぐは、しょうじき、しごとではあんまつかいたくない。(画像が対象ならいろいろ確認しつつ使うけど・・・。))

Deep Learningを説明する取り組み

Deep Learningのような複雑なモデルを説明する研究が進んでいる。アプローチとしては、Deep Learningの各層がどのような入力に強く反応するかを調べる方法が有名で、Feature Visualizationに詳しい。その他の手法として、入力を変化させながらモデル出力の変化を見る方法がある。前々回紹介した「“Why Should I Trust You?”Explaining the Predictions of Any Classifier」で提案されたLIME(Local Interpretable Model-Agnostic Explanations)は、入力近傍の動きを探ることでモデルの説明を行う方法である。ブラックボックスなモデルであっても、妥当な動きが見られれば信頼できる、少なくとも、信頼を得る材料にはなるという考え方である。

LIMEを試してみた

LIMEを行うソフトウェアは

pip install lime

でインストールできる。LIMEはモデル構築手法を選ばず適用できるが、scikit-learnやkerasを使っていると利用しやすい。植物の病気診断サイトはkerasを用いたモデル構築を行っており、limeのチュートリアルに沿って診断根拠を把握することができる。
下の画像は典型的な黒星病の葉であり、植物の病気診断サイトでは99%の確率で黒星病であると判定される。

これは正しい判断であるのだが、正しく画像を判定して黒星病と診断しているのか、たまたま黒星病と判定しているのか、何らかのリーク情報を拾っているのかはパッと見はわからない。LIMEを利用すると、AIがどこに反応しているかある程度把握できる。LIMEを利用した結果は下記のようなものとなる。(画像の大きさはモデルの前提にあわせて変更している。)

上の画像では黒星病と判定するにあたって注目した部分を黄色で囲んでいる。画像中、左部分と中央部分は黒星病診断で重要となる黒の斑点を診断根拠して提示しており、納得感がある。一方で右上のバラのトゲ部分を診断根拠している点には違和感がある。これは「黒星病の写真にトゲが写っている画像が多く、診断にあたりトゲに注目するモデルができている」「黒星病を(トゲがある)バラ特有の病気だと認識した」などと解釈できる。LIMEの結果は人が解釈する必要があり、それにはドメイン知識とモデル(データセット含む)の知識が必要となる。本件ではデータセットのほとんどがバラの写真であることから、前者の疑いが強い。

上記は「画像は健康な葉か?」を診断した結果であり、緑の部分は「この葉が健康であると診断する場合、ポジティブな要素として用いる部分」、赤の部分は「この葉が健康であると診断する場合、ネガティブな要素として用いる部分」を示す。画像上部の緑一色の部分が「健康そう」とした根拠、黒星病の特徴である黒の斑点が「健康でなさそう」という判断根拠とされている。この点は納得感があるが、地面部分も「健康でなさそう」という判断根拠とされていて、違和感がある。「地面の画像とともに健康な葉が提示されている画像が少なく、黒の斑点以外に注目してしまう」「茶色の地面を”枯れている”と誤認識した」などの理由が考えられる。
LIMEを利用することで、AIがどのように診断しているかをある程度可視化することができ、納得感が無い場合はどのように修正するかを判断できる。本件ではおそらくデータセットに問題がある。一応気をつかって撮影したはずのデータセットを用いていても、このような問題を内包している。きちんとしたAI構築は簡単ではない。(コードを書いて実行するだけなら簡単だけど・・・。)

XAIの重要性

説明可能なAIをXAI(Explainable Artificial Intelligence)と呼ぶ。前述のLIMEはXAIを実現するための1手法としても位置づけられる(完璧とは言いがたいが)。XAIは、AIが実務で使用されるにつれ重要となっていくテクノロジーであり、私は2つの側面があると考えている。

  1. モデル構築者の不安を解消するテクノロジー
  2. 社会にAIが受け入れられるためのテクノロジー

1.の観点は前述の通りで、ある程度説明性がないと、構築したAIが現実でうまく動くのか不安で仕方ない私のような人を手助けするモノである。(が、この点を重視する人はほぼいない)
2.の観点は重要である(というか本来的な意味はこっちの方である)。これに関連し、モデルの判断について「説明を受ける権利(right to explanation)」があるとする考え方もあり、GDPR2018でも話題になった。GDPRにおいて「説明を受ける権利」が存在しているかは議論がある(左記が整理された論文その日本語の解説)が、この手の権利が今後重視されることは間違いない。

公平性、FADM(Fairness Aware Data Mining)

公平性の観点からも判断理由の説明は重要である。例えば、「この家を買うと、収入に比べて、借入額が多すぎます。そのため、あなたにはお金を貸しません。」という判断には納得感がある。ある意味、相手のことを思い「無理な返済計画の後、破産しないよう」判断しているとも言える。一方で「あなたの名前は怪しいので、お金を貸しません。」という判断には納得できないだろう。不利に判断される名前が、ある地域に特有のものであれば、差別に繋がる判断として大問題となる可能性すらある。
Deep Learningだ、AIだ、人工知能だ、とテクノロジーを使って何らかの判断をするのは良いのだが、データセットや手法に依存して、差別的なモデルが作成される可能性がある。このようなモデルが運用されると、差別を助長する方向で判断がなされ、その拡大につながりかねない。クロスバリデーションで確認した、統計分析した、など理由があっても、現実世界で「差別的な判断」は受け入れられないだろう。
前述のお金を貸す例でいうと、差別は下記のように広がる。

  1. 特定の名前の人(複数)がお金を返さなかったデータが存在する状況下で
  2. 何も考えずに、名前も判断材料とする「AI」を作り、運用すると
  3. 「AI」は特定の名前の人に不利な結果を返すため、その名前の人に提示される金利は上がり
  4. 特定の名前の人の破産率は上がって、1.に戻る

名前には地域や生まれ年(=年齢)が反映されており年収と関連する。「名前」を入れることで精度が上がる「AI」は作成可能だが(現時点でも)実務屋としては「これはダメです」と言わないといけないんだろーなーと思っている。書いていても思うが、実際の関連性も怪しいし。
現時点では微妙としても、GDPRのような規制が進んでいくと、差別的な判断が法的・社会的に問題となるだろう。現在、持てるデータをすべてつっこみ作られた作成者すら何が起きているかよくわからない「AI」が増えている。知らず知らずのうちに差別的な「AI」を運用し、その結果大炎上する可能性は高い。公平性・説明可能性は今後重要性を増していく。
公平性はFADM(Fairness Aware Data Mining)といったキーワードで研究が進んでいるが決定打となるテクノロジーは存在しない。いくつかの手法が提案されているが、差別の定義が難しかったり、計算コストが高かったりと運用が難しい。一方で、今でも(人間の判断でも)差別が行われている可能性はある。差別とは何か?が定式化され、数学的に差別がないと保証された方法ができれば、世の中が良くなるかもしれない。人工知能ブームでいろんな議論が盛り上がっているし、企業によってはお金もあるしで、この手の研究が進めばよいなーと思う。(結局、結論は前回と同じ)