GPT-4が発表された(GPT-4 (openai.com))。マルチモーダル化や長い入力への対応など非常に面白い拡張がされている。テキスト部分も性能向上があったとのことで機械翻訳でのChatGPT vs GPT-3.5 vs FuguMT | ぷるーふおぶこんせぷと (staka.jp)の後半の文例で翻訳させてみた。
現在はAPI提供はされておらず画面から「あなたは翻訳者です」と役割を入力し、その後「次の文章を英語から日本語に翻訳してください。」と指示している。入力方法は異なるが前回と条件はほぼ同じのはずである。
APIが提供されれば何らかのデータセットを用いたベンチマークもやってみたいと思っている。ただ下記の結果を見るに、ベンチマークデータの品質が問われるレベルで高い性能だなという印象。
最初に、林大臣は、G20外相会合と日本・オーストラリア・インド・米国外相会合の議長を務めるジャイシャンカル外相のリーダーシップに敬意を表しました。彼は、国際社会が一連の大きな危機に直面している中で、日本は5月のG7広島サミットと9月のG20ニューデリーサミットに向けて取り組み、G20議長国を務めるインドと引き続き緊密に連携していくと述べました。これに対し、ジャイシャンカル外相は、林大臣のインド訪問を歓迎し、G20議長国として、G7議長国である日本と協力したいとの意向を示しました。 ※出典:外務省ホームページ (https://www.mofa.go.jp/s_sa/sw/in/page3e_001319.html、機械翻訳を行った結果) |
金融庁は、資金移動業者に関する「行政手続きガイドライン」の改正案を公開コメントのために提案しました。この提案は主に、厚生労働大臣が指定する資金移動業者の口座への賃金支払いを認める労働基準法施行規則の改正に関する省令(仮称英語名)[2022年11月28日公布]を受けて、資金移動業者に対する監督措置を定めたガイドラインの改正を提供することを主な目的としています。 ※出典:金融庁ウェブサイトhttps://www.fsa.go.jp/en/newsletter/weekly2023/527.html)、機械翻訳を行った結果 |
デジタル庁は、政府の非効率的な技術を排除するために最善を尽くし、人々の日常生活を支援するシステムのデジタル化に注力しています。データとシステムのセキュリティを保証することで、ユーザー主導のデジタル化を加速させることを目指しています。私たちは、「政府がサービスとして」、「政府がスタートアップとして」のビジョンを基盤に、「人にやさしいデジタル化:誰も取り残さない」というコミットメントを果たします。 ※出典:デジタル庁(https://www.digital.go.jp/en/creation-en/)、機械翻訳を行った結果 |
GPT-4は全体的に正確かつ流暢に訳せており、前回結果(GPT-3.5、ChatGPT、FuguMT)より優れているように見える。特に3つ目で「デジタル庁」を正しく訳せているのはすごい。「Government as a service」「Government as a startup」「Human-friendly digitalization: No one left behind」の翻訳も良い感じである。
マルチモーダルな入力が可能になったら画像+テキストでの翻訳もぜひ試してみたい。(既存研究はあるものの)マルチモーダルなデータを用いた翻訳&テキスト指示による文のスタイル指定が手軽に実行可能だとするとすごいことだと思う。
その他
この分野はGoogleがPaLM APIを発表(Google Developers Blog: PaLM API & MakerSuite: an approachable way to start prototyping and building generative AI applications (googleblog.com))するなど競争が激化している。LLMの挙動は非常に面白いので色々試していく予定。
現在、GitHub – Shark-NLP/OpenICL: OpenICL is an open-source framework to facilitate research, development, and prototyping of in-context learning.のようなIn-Context Learningもテスト中でその結果も早めに記事にしたいなーと思っている。in-context Learningの挙動も謎が多く(Larger language models do in-context learning differently – arXiv最新論文の紹介 (devneko.jp))非常に興味深い。
GitHub – dair-ai/Prompt-Engineering-Guide: Guides, papers, lecture, and resources for prompt engineeringのようなPrompt作成のテクニックが日本語でも同じなのか?など、LLM周りが急速に発展する中での日本語の立ち位置にも興味津々で実験時間が足りないというのが正直なところ。